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The stochastic Ornstein-Uhlenbeck neuronal model is studied, and estimators of the model input parameters,
depending on the firing regime of the process, are derived. Closed expressions for the Laplace transforms of the
first two moments of the normalized first-passage time through a constant boundary in the suprathreshold
regime are derived, which is used to define moment estimators. In the subthreshold regime, the exponentiality
of the first-passage time is utilized to characterize the input parameters. In the threshold regime and for the
Wiener process approximation, analytic expressions for the first-passage-time density are used to derive the
maximum-likelihood estimators of the parameters. The methods are illustrated on simulated data under differ-
ent conditions, including misspecification of the intrinsic parameters of the model. Finally, known approxima-
tions of the first-passage-time moments are improved.
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I. INTRODUCTION

A wide range of approaches to the modeling of single
neurons have been proposed in the literature. The adequacy
of a model depends on the task it should performsfunctiond
and also on the desired resemblance to biological reality
sformd. The leaky integrate-and-firesLIFd model appears to
be one of the most common, in both artificial neural network
applications and descriptions of biological systemsssee, e.g.,
f1–4gd. This model belongs to the class of so-called single-
point models, in which all the characteristics of the neuron
are collapsed into a single point in space. It can be used in its
deterministic version or in a stochastic version, if an appar-
ent variability in the activity of neurons should be described.
In the stochastic version, under specific assumptionsf5g, it
coincides with the Ornstein-UhlenbecksOUd stochastic pro-
cess and has been extensively investigated in the neuronal
context. Due to the simplicity of this model, some of its
features are questionable, such as unlimited membrane po-
tential fluctuation or state-independent changes of the volt-
age. However, it appears as a good compromise between the
tractability and realism of the model.

Neuronal models of single cells reflect the electrical prop-
erties of the membrane via electric circuit description. Such
circuit models can be written in terms of a differential equa-
tion for the membrane voltage. For the LIF models the firing
is not an intrinsic property of the model and a firing thresh-
old has to be imposed. As for the deterministic models, also
in stochastic models an action potentialsspiked is produced
when the membrane voltage exceeds the voltage threshold
and it corresponds to the first-passage time for the associated
stochastic process describing the voltage. The voltage is in-

stantaneously reset to its initial value. Time intervals be-
tween action potentials are identified with experimentally ob-
servable interspike intervalssISI’sd. The importance of the
ISI’s follows as a consequence of the generally accepted hy-
pothesis that the information transferred within the nervous
system is encoded by the timing of the action potentials.

Numerous papers investigating the OU model for constant
as well as periodic input have been publishedf6–11g. How-
ever, papers devoted to its comparison with experimental
data are relatively rare. The problem is mathematically com-
plex, and the task is analytically solvable only for a simpli-
fied version of the OU model: namely, the Wiener process.
However, the Wiener process is so simplified that any fit to
data must be taken with the utmost care. The model can be
used as a statistical descriptor characterizing the activity of a
specific neuron under specific conditions, but it contains no
information about the biophysical mechanisms responsible
for the spike generation.

The verification of any model has to start with an estima-
tion of its parameters. To derive an efficient estimation pro-
cedure based on ISI data for any model more complex than
the Wiener process is not an easy task. This was shown in
f12,13g, where the parameters for the OU neuronal model
were estimated. The methods used in these two papers were
heavily based on an intensive numerical search of the data
and their comparison with numerically calculated distribu-
tions of ISI’s. Simultaneously, with the effort to estimate the
parameters from ISI’s, methods for their estimation based on
continuous or discrete sampling of the membrane potential
between spikes have been proposedf14,15g. Nevertheless,
this is a problem for which a different type of data than ISI’s
has to be available and is not considered in this article.

The aim of the present contribution is to derive methods
of parameter estimation based on ISI data in the OU neu-
ronal model. We restrict ourselves to an estimation of the
input parameters assuming that the intrinsic parameters are
known, and the effects of misspecification of these param-
eters are investigated. The ISI data follow different distribu-
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tions depending on the parameters of the model, so it is
natural to divide the parameter space in different regimes
characterized by their qualitative behavior. Known results
are used to derive estimators in some parts of the parameter
space. A closed expression for the Laplace transform of the
ISI, valid in a subset of the parameter space, is deduced and
used for a moment estimator. The results are illustrated on
simulated data from one regime and compared with the
Wiener process approximation.

II. MODEL AND ITS PARAMETERS

The changes in the membrane potential between two con-
secutive neuronal firings are represented by a stochastic pro-
cessXt indexed by the timet. The reference level for the
membrane potential is taken to be the resting potential. The
initial voltagesthe reset value following a spiked is assumed
to be equal to the resting potential and set to zero,X0=x0
=0. An action potential is produced when the membrane
voltageX exceeds a voltage threshold for the first time, for
simplicity assumed to be equal to a constantS.0. Formally,
the interspike intervalT is identified with the first-passage
time of the threshold,

T = infht . 0:Xt ù Sj. s1d

It follows from the model assumptions that for time-
homogeneous input containing either a Poissonian or white
noise only, the interspike intervals form a renewal process
and the initial time can always be identified with zero. Here
we consider the white noise input andX is a diffusion pro-
cess. A scalar diffusion processX=hXt ; tù0j can be de-
scribed by the stochastic differential equation

dXt = msXt,tddt + ssXt,tddWt, s2d

whereW=hWt ; tù0j is a standard Wiener process andms·d
and ss·d are real-valued functions of their arguments called
the infinitesimal mean and variance. We investigate the dif-
fusion processs2d specified by the infinitesimal mean

msXt,td = −
Xt

t
+ m, s3d

where constantm characterizes the neuronal input andt.0
reflects spontaneous voltage decaysthe membrane time con-

stantd in the absence of input. Moreover, we consider a con-
stant infinitesimal variance

ssXt,td = s, s4d

where s.0 is the second input parameter. The diffusion
processs2d with the infinitesimal momentss3d and s4d de-
fines the OU diffusion process:

dXt = S−
Xt

t
+ mDdt + sdWt, X0 = x0 = 0. s5d

The OU model yields the Wienersor “perfect integrator”d
model in the limit of an infinitely large time constant,t
→`. The parameters appearing in Eqs.s1d and s5d can be
divided into two groups: parameters characterizing the input,
m and s, and intrinsic parameterst, x0, and S, which de-
scribe the neuron irrespectively of the incoming signalf16g.

Solving either the Fokker-Planck equation or the Kolmog-
orov equation for Eqs.s5d yields the transition density func-
tion

fsx,td = s2pVtd−1/2expH−
sx − Mtd2

2Vt
J , s6d

where

Mt = mts1 − e−t/td, s7d

Vt =
s2t

2
s1 − e−2t/td. s8d

Hence, at each timet the transition probability density func-
tion is normal with meanMt and varianceVt.

Two distinct firing regimes, usually called subthreshold
and suprathreshold, can be established for the OU model; see
Fig. 1. In the suprathreshold regime, the asymptotic mean
depolarizationmt given by Eq.s7d is far above the firing
thresholdS and the ISI’s are relatively regularsdeterministic
firing—which means that the neuron is active also in the
absence of noised. In the subthreshold regime,mt!S and
firing is caused only by random fluctuations of the depolar-
ization sstochastic or Poissonian firingd. The term “Poisso-
nian firing” indicates that when the threshold is far above the
steady-state depolarizationmt srelatively to sd, the firing
achieves characteristics of a Poisson point processf17–19g.
For our purposes, let us denote the third regime, whenmt

FIG. 1. Realizations ofXt

smembrane potential against time,
arbitrary unitsd. When the thresh-
old S is reached at timeT, both
process and time are reset to 0.
The dashed line mt is the
asymptotic depolarization. Upper
panel: suprathreshold regime.
Lower panel: subthreshold
regime.
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<S, as the threshold regime. In the specific situationmt=S,
the first-passage-time density of the OU process across the
boundaryS is known f6,20g:

fstd =

2SexpS2t

t
D

Îpt3s2FexpS2t

t
D − 1G3/2

3exp5−
S2

s2tFexpS2t

t
D − 1G6 . s9d

Division of the firing regimes into three parts was already
proposed inf19g.

For comparison, for the Wiener process obtained as the
limit when t→` in Eqs.s5d, the first-passage-time density is

fstd =
S

Î2ps2t3
expH−

sS− mtd2

2s2t
J , s10d

which is known as the inverse Gaussian distribution in the
statistical literaturef21,22g. It must be pointed out that the
OU model differs from the Wiener model in several relevant
aspects. For instance, for the OU model an equilibrium re-
gime exists since in the limit ast→` the probability density
s6d becomes normal with meanmt and variances2t /2. Fur-
thermore, the crossing of the firing threshold is a sure event
independently onm, whereas for models10d, neuronal firing
is a sure event ifmù0.

III. ESTIMATION OF THE INPUT PARAMETERS

The first problem one encounters when estimating param-
eters in the OU model from ISI data is the determination of
the regime since the distribution ofT is different in the three
regimes, and different estimation procedures should thus be
applied. In the subthreshold regime the ISI’s are approxi-
mately exponentially distributed, whereas in the threshold
and suprathreshold regimes the process of the first-passage
times is far from being Poisson. It is not obvious how to
determine the regime, but one could, e.g., perform an expo-
nential distribution test, thus discriminating between sub-
threshold or others. If an exponential distribution of ISI’s is
rejected, the suprathreshold estimation procedure is applied.
In the case it suggests that the data were generated by the
process in the threshold regime by estimatingm<S/t, it is
finally investigated as such.

When a closed expression for the density of the first-
passage-time distribution is available, maximum-likelihood
estimation can be applied, and this also provides estimators
of the asymptotic variance of the estimators from the in-
verted Fisher information evaluated at the optimum. This is
the case in the threshold regime and for the Wiener process
approximation, Eqs.s9d ands10d. In the subthreshold regime
the density is approximately exponential, which suggests the
corresponding maximum-likelihood estimators. In the su-
prathreshold regime, where the distribution is not available,
we propose a moment estimator. A representation of the
Laplace transform is given by

EfekT/tg =

expH smtd2

2ts2 JDkSÎ2mt

Îts
D

expH smt − Sd2

2ts2 JDkSÎ2smt − Sd
Îts

D
=

HkS mt

Îts
D

HkS smt − Sd
Îts

D s11d

for k,0, whereDks·d and Hks·d are parabolic cylinder and
Hermite functions, respectively; seef23,24g. The result can
be extended tok.0 in a certain part of the parameter space.
Specifically, we deduce closed expressions fork=1 and 2,
requiring mt.S ssuprathresholdd and s2,2smt−Sd2/t,
which provides closed expressions of moment estimators.
This last method is checked on simulated data sets and com-
pared to the threshold estimation in the case when the esti-
mation yieldsm̂,S/t+« for some small« and to the Wiener
approximation.

The data are assumed to ben observations ofT: ti, i
=1, . . . ,n. The model assumes that the neuronal output forms
a renewal process, so that the observations will be indepen-
dent and identically distributed. Note that since we are only
interested in estimating two parameters of a distribution,n
does not have to be as large as if we want to estimate the
functional form of the distribution ofT.

A. Subthreshold regime

If mt!S, the first-passage-time density function can be
approximated by an exponential distributionf17–19g

fstd = l exps− ltd, s12d

where

l =
sÎpt

S− mt
expS−

sS− mtd2

s2t
D . s13d

It is easily seen that from this distribution it is only possible
to determinem and s up to the parameter functionu=sS
−mtd /sÎt. Maximum likelihood yields the estimating equa-
tion

û

Îp
expsû2d = t̄, s14d

where t̄=s1/ndoi=1
n ti. The equation is easily solved numeri-

cally. The asymptotic variance of the estimator estimated
from the inverted Fisher information evaluated at the opti-
mum is given by

varfûg =
û2

ns1 − 2û2d2
. s15d

B. Threshold regime

If mt=S, the first-passage-time density is given by Eq.
s9d. In this case onlys needs to be estimated sincem=S/t,
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and it is straightforward to calculate the maximum-likelihood
estimator:

ŝ2 =
1

n
o
i=1

n
2S2

tfexps2ti/td − 1g
. s16d

The asymptotic variance of the estimator calculated by the
inverted Fisher information at the optimum is given by

varfŝg =
ŝ2

2n
. s17d

C. Suprathreshold regime

By defining suitable martingales and applying Doob’s
optional-stopping theorem, it is possible to find closed ex-
pressions for the Laplace transformEfekT/tg, k=1,2, in the
suprathreshold regime and with certain restrictions on the
size of s. These expressions can then be applied to define
estimators for this parameter region. In the Appendix it is
shown that

EfeT/tg =
mt

mt − S
, s18d

Efe2T/tg =
2smtd2 − ts2

2smt − Sd2 − ts2 , s19d

if

s2 ,
2smt − Sd2

t
. s20d

Conditions20d means that the asymptotic standard deviation
of Xt is smaller than the distance between the threshold and
the asymptotic mean ofXt. Straightforward estimators of
EfeT/tg and Efe2T/tg are obtained from the empirical mo-
ments:

Z1 = ÊfeT/tg =
1

n
o
i=1

n

eti/t, s21d

Z2 = Êfe2T/tg =
1

n
o
i=1

n

e2ti/t. s22d

Moment estimators of the parameters, assuming that the data
are in the allowed parameter region, are then obtained from
Eqs.s18d and s19d:

m̂ =
SZ1

tsZ1 − 1d
s23d

and

ŝ2 =
2S2sZ2 − Z1

2d
tsZ2 − 1dsZ1 − 1d2 . s24d

Note that the asymptotic depolarization will always be esti-
mated to be suprathresholdsm̂t.Sd and that 0,ŝ2,2sm̂t
−Sd2/t. It follows from Eq. s23d that m̂<S/t if Z1<Z1−1.

In other words, ifti @t for somei, the data suggest that the
model is not in the suprathreshold regime. This shows the
importance of the time constant for determining the firing
regimes.

D. Approximations of the ISI moments

Approximations of the mean and variance ofT were pro-
posed inf19,25g in a parameter region which corresponds to
our suprathreshold regime. It is shown there that forS=1 and
t=1,

EfTg < lnS m

m − 1
D −

s2

4
S 1

sm − 1d2 −
1

m2D , s25d

varfTg <
s2

2
S 1

sm − 1d2 −
1

m2D , s26d

in the casem−1@s. Using the exact resultss18d and s19d
we can refine Eqs.s25d ands26d and give exact conditions on
m ands for the approximation to be valid. Taylor expansion
of lnseTd to second order aroundEfeTg and taking expecta-
tions yields

EfTg = Efln eTg

< lnsEfeTgd −
varfeTg
2EfeTg2

= lnS m

m − 1
D −

s2

4
S 2m − 1

m2fsm − 1d2 − s2/2gD . s27d

This approximation is valid ifm.1 ands,Î2sm−1d fcon-
dition s20d for S=1 andt=1g. Repeating the calculation for
flnseTdg2 yields

EfT2g = Efsln eTd2g < hlnsEfeTgdj2 − hlnsEfeTgd − 1j
varfeTg
EfeTg2 ,

s28d

so that

varfTg <
s2

2
S 2m − 1

m2fsm − 1d2 − s2/2gD , s29d

ignoring higher-order terms. Approximating further in Eqs.
s27d and s29d by assumingsm−1d2−s2/2<sm−1d2 yields
Eqs.s25d and s26d.

E. Wiener process approximation

In the simpler case, whent→` in Eqs. s5d, the first-
passage-time density is given by Eq.s10d, and it is straight-
forward to calculate the maximum-likelihood estimators:

m̂ =
S

t̄
, s30d

ŝ2 = S2S1

n
o
i=1

n
1

ti
−

1

t̄
D . s31d

The estimators are stochastically independent and the vari-
ances are
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varfm̂g =
ŝ2

nt̄
+

2ŝ4

n2S2 , s32d

varF 1

ŝ2G =
2

nŝ4; s33d

seef21,22g. For comparison, the asymptotic variances of the
estimators estimated by the inverted Fisher information
evaluated at the optimum are given by varfm̂g=ŝ2/nt̄ and
varfŝ2g=2ŝ4/n, which can be used as convenient approxi-
mations of Eqs.s32d and s33d.

IV. EXAMPLES AND NUMERICAL RESULTS

Trajectories from the OU process in the threshold and
suprathreshold regimes were simulated according to the Eu-
ler scheme with a step size of 0.01 msec for different input
parameter values. The process was run until reaching a
thresholdS where the time was recorded. This was repeated
100 times, and on the data sets obtained,m and s were
estimated after performing a Kolmogorov-Smirnov test of
exponential distribution to test the regime. All simulated data
sets were highly rejected as exponentially distributed: the
highestp value was 0.0036 and the mean was less than 10−4.

Three sets of simulations were run: the first to test the
estimatorss23d ands24d, the second to evaluate the possible
influence from misspecifications in the intrinsic parameters
on the same estimators, and the third to compare with the
estimatorss30d and s31d from the Wiener process approxi-
mation. In the last two sets of simulations, also estimator
s16d was applied.

In the first set of simulations the parameter values were
set to m=1.5 mV/msec,s=1 mV/Îmsec,t=10 msec, and
S=10 mV. A 1000 data sets each of size 100 were generated,
and on each of themm ands were estimated. The estimates
of m averaged 1.496±0.035 mV/msecsmean±standard de-
viationd, and the estimates of s averaged
0.926±0.127 mV/Îmsec. Normal quantile plots of the esti-
mates are in Fig. 2. The estimator ofm appears nonbiased,
with small variance and normal distribution, whereas the es-
timator ofs underestimates the correct value and is far from
being normal, with a heavy tail to the right.

In the second set of simulations the influence of misspeci-
fications in the intrinsic parameters is investigated.m was
either 1, 1.5, or 2 mV/msec, ands was either 0.1, 1, or
1.5 mV/Îmsec. Five combinations of the intrinsic param-
eters were considered:t=10 msec andS=8, 10, and 12 mV,
respectively, andS=10 mV andt=8 and 12 msec, respec-
tively, for each of the nine combinations of input parameter
values. Onlym’s for which mtùS were considered, which
gives a total of 39 combinations. A 100 data sets were gen-
erated for each combination, and on each data setm and s
were estimated. In the estimation procedure it was assumed
thatt=10 msec andS=10 mV. In Fig. 3 the results are sum-
marized, where the points represent the average of the esti-
mates for each combination of parameters.

When the intrinsic parameters are well specifiedss’s on
the panelsd, estimates ofm are superior in all cases. IfS is

assumed largers=10d than the true values=8d, m tends to be
overestimatedsn’s in left paneld and underestimated ifS is
assumed smallers=10d than the true values=12d s1’s in left
paneld. Misspecifications int have the opposite effect on the
estimates ofm s3’s andL’s in left paneld.

The picture forŝ is more complicatedsright paneld. As
already shown in Fig. 2,ŝ seems downward biased. Whens
does not fulfill conditions20d it is poorly estimated. Mis-
specifications int andS appear to have the same effects of
either enlarging or reducingŝ as onm̂.

When the suprathreshold estimators23d estimatesm to be
in threshold regime—i.e.,m̂t−S,« for some small«—the
threshold estimators16d for s should be applied. This is the
case for the left points in each group in right panel of Fig. 3,
where the estimatess16d of s are seen to be superiorsonly
the case with well-specified intrinsic parameters is includedd.
When we are far from threshold regime, the estimators16d is
very poorssome points fall above plotting regiond.

In the third set of simulations it was assumed that the
intrinsic parameters were well specified, but two values of
the time constant were considered,t=10 or 20 msec, andS
was set to 10 mV. The same sets of input parameters as
before were used. Estimation was performed both with su-
prathreshold estimation, Eqs.s23d ands24d, with the Wiener

FIG. 2. Gaussian quantile plotssempirical versus theoretical
quantilesd for the estimatorss23d and s24d from the 1000 artificial
data sets simulated withm=1.5 mV/msec,s=1 mV/Îmsec, t
=10 msec, andS=10 mV. The straight lines pass through the first
and third quartiles; the horizontal lines are set at the parameter
values used in the simulations.
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process approximation, Eqs.s30d and s31d, and with thresh-
old estimation, Eq.s16d. Again, 100 data sets were generated
for each combination of parameters. In Fig. 4 the results are
summarized, with points representing the average of esti-
mates.

The estimators23d of m ss’s and n’s in left paneld is
clearly superior tos30d s3’s and1’s in left paneld. Not sur-

prisingly, the Wiener process approximation improves when
t is larger, since in the limit whent→`, the OU process
converges to the Wiener process.

As before, the estimators24d of s is always poor when
condition s20d is not fulfilled. The estimators31d does not
seem sensitive to the approximation and is always good,
maybe except for smalls in the threshold regime. If Eq.s23d

FIG. 3. Mean from 100 realizations of the estimatorss23d ands24d whenSandt are misspecified. Each data set consists of 100 simulated
ISI’s. Left panel: estimates ofm versus correct values. For each value ofm, s=0.1 mV/Îmsecsleft pointsd, s=1.0 mV/Îmsecsmiddle
pointsd, ands=1.5 mV/Îmsecsright pointsd. Right panel: estimates ofs versus correct values. For each value ofs, m=1.0 mV/msecsleft
pointsd, m=1.5 mV/msecsmiddle pointsd, andm=2.0 mV/msecsright pointsd. Also estimators16d is plotted in the right panel whenS and
t are well specifiedspoints above plotting region are missingd. The dashed lines are the identity lines, indicating the best possible estimates.

FIG. 4. Estimation assuming the full model and the Wiener approximation, respectively, on data sets simulated from the full model for
different time constants. Mean from 100 realizations. Left panel: estimates ofm. Right panel: estimates ofs. Points above plotting region of
estimators16d are missingsright paneld. The dashed lines are the identity lines, indicating the best possible estimates.
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givesm̂t<S, then Eq.s24d should not be applied. Instead, if
there is confidence in the value oft, a good choice would be
Eq. s16d, otherwise Eq.s31d.

Simulations of trajectories in the subthreshold regime is a
difficult task, and there exists a large literature on this subject
f26–28g. It is not the aim of the present paper to face these
problems, and only the threshold and suprathreshold regimes
have been considered.

V. DISCUSSION

The distribution of the first-passage time through a con-
stant level by an OU process has been the subject of many
studies, not only in neuronal modelingf29g. In this paper we
use results on moments and distributions to propose estima-
tors of the input parameters, depending on the regime.

The main contributions of the present work are the deri-
vation of expressions forEfeT/tg and Efe2T/tg of the first-
passage time of the OU process through a constant threshold.
This leads to simple and closed expressions for moment es-
timators ofm ands in the suprathreshold regime and whens
is small relative to the distance between the asymptotic de-
polarization and the threshold. The appealing feature is that
the numerical difficulties arising from the handling of the
expressions given in the known results for the Laplace trans-
form swhere the exponents of the exponential function in the
expectations are negatived are avoided.

The results obtained from the simulated data show that
the proposed estimation procedure in the suprathreshold re-
gime works excellently form. The variance parameters is
more difficult, especially whens is larger than the condition
required for the expressions of the above-mentioned mo-
ments to be correct. We suggest estimatingm, and in case it
indicates that the process is the near-threshold regime, an-
other estimator fors should be applied—e.g., the maximum-
likelihood estimator fors when the process is in the thresh-
old regime or the estimator derived from the Wiener process
approximation of the OU process.

In this paper only the situation where the intrinsic param-
eters are assumed to be known is considered. The time con-
stantt has shown to be crucial for the estimation, and a way
of estimating also this parameter from ISI data could be the
following. If s is estimated with the Wiener process approxi-
mations31d, then Eqs.s18d ands19d with the left-hand sides
substituted with Eqs.s21d and s22d would constitute a two-
equation system with two unknownssm andtd, which could
be solved numerically.

Previously, a computer-intensive method was proposed in
f12g for the estimation of the same two parameters in the OU
model as in this paper. Their method is based on the experi-
mentally observed first- and second-order moments of inter-
spike intervals and applied to interspike interval data re-
corded from neurons in the mesencephalic reticular
formation of the cat during hypothetical sleep, slow-wave
sleep stage, and wake stage. However, the numerical evalu-
ations implicated are difficult to handle for the general re-
searcher.

In f13g it was directly stated that the OU model does not
reproduce spiking statistics of neurons in prefrontal cortex.

Their analysis is based on the coefficient of variation and the
skewness coefficient, which are, respectively, a measure of
the spiking irregularity and a measure of the asymmetry of
the interval distribution. It was found that the data are not
consistent with the model if the time constant takes a value
considered as standard one. The authors deduced from the
finding that unless the inputs are correlated, the OU model is
not adequate. This idea was further pursued inf30g where the
correlation of consecutive ISIs was introduced. The authors
concluded that the OU model with temporally correlated in-
puts may account for the data if the correlation time scale of
the inputs is on the order of 100 msec. The same modeling
approach was applied inf31g.

The model might be too simple to reproduce the inter-
spike intervals realistically. A natural generalization of the
model was introduced simultaneously with the classical LIF
model sfor references seef32gd. In this model the passive
membrane time constant is replaced by a drive-dependent
effective time constant. More specifically, drifts3d in Eq. s2d
is replaced by

msXt,td = −
Xt

t
+ msVE − Xtd + nsXt − VId, s34d

wherem.0 andn,0 are new constants characterizing the
input. It is obvious that now the model has an input-
dependent time constant and its behavior will be different
from the OU model. In addition, taking into account the
variable conductance, the infinitesimal variance becomes
state dependentf33g. The estimation in this type of models
will be investigated elsewhere.
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APPENDIX

Consider the OU models5d for the membrane potentialX
at time t, with solution

Xt = mt − e−t/tsmt − vtd, sA1d

wherevt=se0
t es/tdWs. We will now prove Eqs.s18d ands19d

using martingales, which will be defined using the condi-
tional moments from the OU process. In general, for a mar-
tingaleMt and a stopping timeT, we haveEfMT∧tg=EfM0g,
whereT∧ t=minsT ,td. For a subclase we have the stronger
result sseef34g, p. 221d

Doob’s optional-stopping theorem. Let T be a stopping
time and letMt be a uniformly integrable martingale. Then
EfMTg=EfM0g.

Note thatT given by Eq.s1d is a stopping time. Fork
PN, Eq. sA1d yields that sXt−mtdkekt/t=svt−mtdk so that
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Efsvt−mtdkuvsg=EfsXt−mtdkekt/t uXsg. For t.s we therefore
have

Efsvt − mtduvsg = svs − mtd, sA2d

Efsvt − mtd2uvsg = svs − mtd2 +
ts2

2
se2t/t − e2s/td,

sA3d

Efsvt − mtd4uvsg = Ssvs − mtd2 +
3ts2

2
se2t/t − e2s/tdD2

−
3t2s4

2
se2t/t − e2s/td2. sA4d

Define the filtrationFt=ssXs;0øsø td, the s algebra gen-
erated byXs for 0øsø t. Then the process

Yt = smt − Xtdet/t = mt − vt sA5d

is a martingale with respect toFt by Eq. sA2d and because
EfYtg,` sinceXt is Gaussian. ThereforeYt

T=YT∧t, the pro-
cessYt stopped atT, is also a martingalesseef34g, p. 99d.
Moreover, if mt.S and s2,2smt−Sd2/t, then Yt

T is uni-
formly integrable. To show this it is enough to show that
EfuYt

Tupg,K for all t, for somep.1 andK a positive con-
stant; seef34g, p. 127. First define

Ỹt = smt − vtd2 −
ts2

2
se2t/t − 1d, sA6d

which is a martingale with respect toFt:

EfỸtuFsg = EFsmt − vtd2 −
ts2

2
se2t/t − 1duvsG

= smt − vsd2 +
ts2

2
se2t/t − e2s/td −

ts2

2
se2t/t − 1d

= Ỹs, sA7d

using Eq.sA3d, and that all moments of a Gaussian variable

are finite, so thatEfỸtg,`. Therefore,

smtd2 = EfỸ0g = EfỸT∧tg = Efsmt − vT∧td2g

−
ts2

2
Efse2sT∧td/t − 1dg.

sA8d

Put p=2, then

EfuYt
Tu2g = Efsmt − vT∧td2g = smtd2 +

ts2

2
Efse2sT∧td/t − 1dg

ø smtd2 +
ts2

2
Efe2T/tg sA9d

by Eq. sA8d. To give an upper bound onEfe2T/tg use Eq.
sA8d again to obtain

smtd2 = EFsmt − XT∧td2e2sT∧td/t −
ts2

2
se2sT∧td/t − 1dG

ù smt − Sd2Efe2sT∧td/tg −
ts2

2
sEfe2sT∧td/tg − 1d,

sA10d

where we have used thatsmt−XT∧td2. smt−Sd2 when mt
.S ssuprathreshold cased. Since s2,2smt−Sd2/t, Eq.
sA10d can be rearranged to

2smtd2 − ts2

2smt − Sd2 − ts2 ù Efe2sT∧td/tg. sA11d

Taking limits on both sides we obtain

2smtd2 − ts2

2smt − Sd2 − ts2 ù lim
t→`

Efe2sT∧td/tg = Efe2T/tg sA12d

by monotone convergence. Doob’s optional-stopping theo-
rem can therefore be applied toYt

T if mt.S and if s2

,2smt−Sd2/t. This yields

mt = EfY0
Tg = EfYT

Tg = Efsmt − XTdeT/tg = smt − SdEfeT/tg,

sA13d

which finally yields Eq.s18d. To prove Eq.s19d note that
from Eq. sA12d we have that in the given parameter subset
Efe2T/tg is finite so that Eq.s11d can be applied, which di-
rectly yields

Efe2T/tg =

H2S mt

Îts
D

H2S smt − Sd
Îts

D =

4S mt

Îts
D2

− 2

4S smt − Sd
Îts

D2

− 2

=
2smtd2 − ts2

2smt − Sd2 − ts2 .
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