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Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model
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The stochastic Ornstein-Uhlenbeck neuronal model is studied, and estimators of the model input parameters,
depending on the firing regime of the process, are derived. Closed expressions for the Laplace transforms of the
first two moments of the normalized first-passage time through a constant boundary in the suprathreshold
regime are derived, which is used to define moment estimators. In the subthreshold regime, the exponentiality
of the first-passage time is utilized to characterize the input parameters. In the threshold regime and for the
Wiener process approximation, analytic expressions for the first-passage-time density are used to derive the
maximume-likelihood estimators of the parameters. The methods are illustrated on simulated data under differ-
ent conditions, including misspecification of the intrinsic parameters of the model. Finally, known approxima-
tions of the first-passage-time moments are improved.
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[. INTRODUCTION stantaneously reset to its initial value. Time intervals be-
tween action potentials are identified with experimentally ob-
A wide range of approaches to the modeling of singleservable interspike intervaldSI's). The importance of the
neurons have been proposed in the literature. The adequaggl’s follows as a consequence of the generally accepted hy-
of a model depends on the task it should perf¢fumction)  pothesis that the information transferred within the nervous
and also on the desired resemblance to biological realitgystem is encoded by the timing of the action potentials.
(form). The leaky integrate-and-fird.IF) model appears to Numerous papers investigating the OU model for constant
be one of the most common, in both artificial neural networkas well as periodic input have been publistiée11]. How-
applications and descriptions of biological systdisee, e.g., ever, papers devoted to its comparison with experimental
[1-4]). This model belongs to the class of so-called single-data are relatively rare. The problem is mathematically com-
point models, in which all the characteristics of the neurorPlex, and the task is analytically solvable only for a simpli-
are collapsed into a single point in space. It can be used in it§ed version of the OU model: namely, the Wiener process.
deterministic version or in a stochastic version, if an appartowever, the Wiener process is so simplified that any fit to
ent variability in the activity of neurons should be described.data must be taken with the utmost care. The model can be
In the stochastic version, under specific assumpt[@isit used as a statistical descriptor characterizing the activity of a

coincides with the Ornstein-Uhlenbe¢®U) stochastic pro- _s;l)cemﬂct.neurobn utn(tjr?r sk,)pecgm _cor|1d|t|0nhs, but it contalns_Qlo
cess and has been extensively investigated in the neuron‘Jrotrr?;aslp?irlleaggﬁerat?on lophysical mechanisms responsible
context. Due to th.e simplicity of this quel, some of its The verification of any model has to start with an estima-
features are questionable, such as unlimited membrane PAs

tential fluctuati tate-ind dent ch £ th it n of its parameters. To derive an efficient estimation pro-
ential Tluctuation or state-independent changes or In€ VOltaaqyre pased on ISI data for any model more complex than

bili d i ¢ th del If'ﬁe Wiener process is not an easy task. This was shown in
tractability and realism of the model. [12,13, where the parameters for the OU neuronal model

Neuronal models of single cells reflect the electrical Prop+ere estimated. The methods used in these two papers were

erties of the membrane via electric circuit description. SUCI'heavin based on an intensive numerical search of the data
c_|rcuf|t mr?dels cabn be W”:ten m;ermﬁ OL?: d|ffe(:jre|nt|z;1]| efql_‘a'and their comparison with numerically calculated distribu-
tion for the membrane voltage. For the models the firingy;, g of |S's. Simultaneously, with the effort to estimate the
IS not an intrinsic property of the model qnq qung thresh- arameters from ISI's, methods for their estimation based on
old has to be imposed. As for the deterministic models, als ontinuous or discrete sampling of the membrane potential

in stochastic models an action potentigpike is produced tween spikes have been propo$éd,15. Nevertheless,
when the membrane voltage exceeds the voltage thres_hoﬁ;ﬁs is a problem for which a different type of data than ISI's
and it corresponds to the first-passage time for the associat s to be available and is not considered in this article

stochastic process describing the voltage. The voltage is in- The aim of the present contribution is to derive methods

of parameter estimation based on ISI data in the OU neu-
ronal model. We restrict ourselves to an estimation of the

*Electronic address: sudi@pubhealth.ku.dk input parameters assuming that the intrinsic parameters are
URL: http://www.biostat.ku.dRsudi/ known, and the effects of misspecification of these param-
"Electronic address: lansky@biomed.cas.cz eters are investigated. The ISI data follow different distribu-
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FIG. 1. Realizations ofX;
(membrane potential against time,
arbitrary unitg. When the thresh-
> old S is reached at timd, both
time process and time are reset to 0.
The dashed line ur is the
asymptotic depolarization. Upper
panel: suprathreshold regime.
________________________________ KT Lower panel:  subthreshold
regime.
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tions depending on the parameters of the model, so it istan} in the absence of input. Moreover, we consider a con-
natural to divide the parameter space in different regimestant infinitesimal variance

characterized by their qualitative behavior. Known results _

are used to derive estimators in some parts of the parameter o(X.h) =0, (4)
space. A closed expression for the Laplace transform of thghere >0 is the second input parameter. The diffusion
ISI, valid in a subset of the parameter space, is deduced angtocess(2) with the infinitesimal moment$3) and (4) de-
used for a moment estimator. The results are illustrated ofines the OU diffusion process:

simulated data from one regime and compared with the

Wiener process approximation. dX, = <_ % + ,u)dt +adW, Xo=X,=0. (5)
7.

Il. MODEL AND ITS PARAMETERS The OU model yields the Wiengor “perfect integrator)

_ . model in the limit of an infinitely large time constant,

The changes in the membrane potential between two con=,«. The parameters appearing in E@¢s) and (5) can be
secutive neuronal firings are represented by a stochastic prgivided into two groups: parameters characterizing the input,

cessX; indexed by the time. The reference level for the , and ¢, and intrinsic parameters, x,, and S, which de-

membrane potential is taken to be the resting potential. Thecribe the neuron irrespectively of the incoming sigfiiz].
initial voltage (the reset value following a spikés assumed Solving either the Fokker-Planck equation or the Kolmog-

to be equal to the resting potential and set to z&sXy  orov equation for Eqs(5) yields the transition density func-
=0. An action potential is produced when the membrangjon

voltage X exceeds a voltage threshold for the first time, for )
simplicity assumed to be equal to a constant0. Formally, f(x,t) = (ZWVI)'l’Zexp{— (x=My } 6)
the interspike intervall is identified with the first-passage ' 2v, |’

time of the threshold,

where
T=inf{t>0:X = S}. 1) M, = (1 —e't”), 7)
It follows from the model assumptions that for time-
homogeneous input containing either a Poissonian or white T _
; . e Vi=—(1-e? (8)
noise only, the interspike intervals form a renewal process t= '

and the initial time can always be identified with zero. Here
we consider the white noise input aidis a diffusion pro- Hence, at each timethe transition probability density func-
cess. A scalar diffusion proces$={X;;t=0} can be de- tion is normal with meaM, and variancev;.

scribed by the stochastic differential equation Two distinct flrlng regimes, Usua”y called subthreshold
and suprathreshold, can be established for the OU model; see
dX; = u(X, t)dt + o (X, H)dW,, (2 Fig. 1. In the suprathreshold regime, the asymptotic mean

—[\A/ - ; ; depolarizationur given by Eq.(7) is far above the firing
here W={W,;t= t W
whereW={W;t=0} is a standard Wiener process 3ad) thresholdS and the ISI's are relatively regulédeterministic

n -) are real-val functions of their argumen lled,. . . ; . :
and o) are real-valued functions of their arguments ca edfmng—whlch means that the neuron is active also in the

the infinitesimal mean and variance. We investigate the dif- . .
fusion proces$2) specified by the infinitesimal mean absence of noige In the subthreshold regimgy7<S and

firing is caused only by random fluctuations of the depolar-
Xq ization (stochastic or Poissonian firingThe term “Poisso-
p(X,t) = = Lt (3 nian firing” indicates that when the threshold is far above the
steady-state depolarizationr (relatively to o), the firing
where constant. characterizes the neuronal input ang0  achieves characteristics of a Poisson point protggs19.
reflects spontaneous voltage de¢dye membrane time con- For our purposes, let us denote the third regime, when
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~§, as the threshold regime. In the specific situatior=S, (un)? \’EMT
the first-passage-time density of the OU process across the 2702 Dy =
boundaryS is known[6,20]: E[ekT7] = i im
(ur=9%{  (V2(ur=9)
2t =
28exp<:> exp{ 272 |24 o
f(t) - 3/2 T
[ Hi| -
Vrio?| exp — | - 1 k \;:_0_
4 = a\ (11)
L H ( (u7=9 )
k —
xexp| - o . (9) V1o
027{3"!{:) - 1] for k<0, whereD,(-) andH,(-) are parabolic cylinder and

Hermite functions, respectively; s¢23,24]. The result can
Division of the firing regimes into three parts was alreadybe extended t&>0 in a certain part of the parameter space.
proposed inf19]. Specifically, we deduce closed expressionsKernl and 2,
For comparison, for the Wiener process obtained as thgequiring ur>S (suprathreshold and ¢?<2(ur—9S?/7,
limit when 7— < in Egs.(5), the first-passage-time density is which provides closed expressions of moment estimators.
s (S— ut)? This(ljatst ?‘etrt]rc])d ishc::jeckcid o? simul;ahted data Sﬁts a;ud cortn—
f(t) Ny ex 2oz [ (10)  pared to the threshold estimation in the case when the esti

mation yieldsp < S/ 7+& for some smalk and to the Wiener
which is known as the inverse Gaussian distribution in the2PProximation.

statistical literaturg21,22. It must be pointed out that the The data are assumed to beobservations off: t;, i

OU model differs from the Wiener model in several relevantzl' ... n. The model assumes that the neuronal output forms

aspects. For instance, for the OU model an equilibrium red renewal process, so that the observations will be indepen-

gime exists since in the limit &s— the probability density dent and identically distributed. Note that since we are only

(6) becomes normal with meaar and variancer2/2. Fur- interested in estimating two parameters of a distribution,

thermore, the crossing of the firing threshold is a sure even?oes;_ notlr:cave t‘; tl:;]e a(‘f ![a':aget' as |frwe want to estimate the
independently onu, whereas for modgl10), neuronal firing unctional form ot the distribution of.

is a sure event it=0. A. Subthreshold regime

[ll. ESTIMATION OF THE INPUT PARAMETERS If wr<S the first-passage-time density function can be

i L approximated by an exponential distributipki/—1
The first problem one encounters when estimating param-pp y P prv-19

eters in the OU model from ISI data is the determination of f(t) =\ exp(— \1), (12
the regime since the distribution ®fis different in the three h
regimes, and different estimation procedures should thus panere

applied. In the subthreshold regime the ISI's are approxi- N (S— ur)?
mately exponentially distributed, whereas in the threshold A= S ur p(- 27 ) (13

and suprathreshold regimes the process of the first-passage
times is far from being Poisson. It is not obvious how to|t is easily seen that from this distribution it is only possible
determine the regime, but one could, e.g., perform an expao determinex and o up to the parameter functiofi=(S
nential distribution test, thus discriminating between sub—_MT)/mr“T. Maximum likelihood yields the estimating equa-
threshold or others. If an exponential distribution of ISI’s is tjgn
rejected, the suprathreshold estimation procedure is applied.
In the case it suggests that the data were generated by the
process in the threshold regime by estimatipg S/ 7, it is
finally investigated as such. X
When a closed expression for the density of the firstwheret=(1/n)=_ t;. The equation is easily solved numeri-
passage-time distribution is available, maximum-likelihoodcally. The asymptotic variance of the estimator estimated
estimation can be applied, and this also provides estimatofgom the inverted Fisher information evaluated at the opti-
of the asymptotic variance of the estimators from the in-mum is given by
verted Fisher information evaluated at the optimum. This is
the case in the threshold regime and for the Wiener process
approximation, Eqs(9) and(10). In the subthreshold regime
the density is approximately exponential, which suggests the
corresponding maximum-likelihood estimators. In the su-
prathreshold regime, where the distribution is not available,
we propose a moment estimator. A representation of the If w7=S, the first-passage-time density is given by Eq.
Laplace transform is given by (9). In this case onlyr needs to be estimated sinpe=S/ 7,

=

exp(6?) =t, (14)

3|

4

f=——.
vat el n(1 - 26%)?

(15

B. Threshold regime
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and it is straightforward to calculate the maximume-likelihood In other words, ift;> 7 for somei, the data suggest that the
estimator: model is not in the suprathreshold regime. This shows the
importance of the time constant for determining the firing

82 .
52 = 2 Zt/ — (16) regimes.
nizy fexp(2t/n) - 1] D. Approximations of the ISI moments
The asymptotlc variance of the estimator calculated by the Approx|mat|ons of the mean and varianceTofvere pro-

inverted Fisher information at the optimum is given by posed in[19,25 in a parameter region which corresponds to
A our suprathreshold regime. It is shown there thaSed and

., 07
Va.r[o'] =—. (17) T:ly
2n 2

1 1
m-nl ) St e

C. Suprathreshold regime ® m= K

By defining suitable martingales and applying Doob’s o2 1 1

optional-stopping theorem, it is possible to find closed ex- varT] ~ 2\ o2 2) (26)

pressions for the Laplace transfoffie<"”], k=1,2, in the
suprathreshold regime and with certain restrictions on thén the caseu—1> 0. Using the exact result€l8) and (19)

size of 0. These expressions can then be applied to definge can refine Eq$25) and(26) and give exact conditions on
estimators for this parameter region. In the Appendix it isu ando for the approximation to be valid. Taylor expansion

shown that of In(e) to second order arounB[e’] and taking expecta-
tions yields
T MT
E[e""]= s (18) E[T]=E[Ine']
_ T, varfe']
oy 2ur = 70 nEe) - e
Ee)=——5 . (19
2(ur-9?- 70?2
ol ) S @
if k-1 pA(u=-172-0%2])
o< 2(ur—9? (20) This approximation is valid ifz>1 ando < \2(x—1) [con-
T ' dition (20) for S=1 andr=1]. Repeating the calculation for
[In(e")]? yields
Condition(20) means that the asymptotic standard deviation
of X; is smaller than the distance between the threshold and___, T2 T2 T vafe']
the asymptotic mean oK;. Straightforward estimators of E[T*]=E[(ne)"] = {In(E[e' ]}~ {In(E[e')) - L} =7 E[e"]?’
E[e""] and E[€?"7] are obtained from the empirical mo- o8
ments: (28)
so that
z,=Ele"= 2 i, (2D) o2 2u-1
vafT] = —( 5 it 5 ) (29
[(u—1)%-0%12]
ignoring higher-order terms. Approximating further in Egs.
,=E[e?"7]= 2 e, (22) (27 and (29) by assuming(u—1)2-c?/2~=~(u—1)? yields
Mi=1 Egs.(25) and(26).

Moment estimators of the parameters, assuming that the data

. - . E. Wiener process approximation
are in the allowed parameter region, are then obtained from P PP

Egs.(18) and(19): In the simpler case, whem—« in Egs. (5), the first-
passage-time density is given by EG0), and it is straight-

= S4 23) forward to calculate the maximum-likelihood estimators:

T(Zl - 1) S
o= i 30
and M N (30)
2S(2,- 22
2= (;1)2 (24) A 101 1
7(22_1)(21_1) 0’2232 E t__I_ . (31)
i=1 Y

Note that the asymptotic depolarization will always be esti-
mated to be suprathreshol@~>9) and that 6<6°<2(ir  The estimators are stochastically independent and the vari-
-9?2/ . It follows from Eq.(23) that x=S/7if Z,~Z,;-1. ances are
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o, 2" é :
val = , 32 o} : .
r[lu] nt 252 ( ) ‘Lg i i
8
var{i} - 2. (33 -
5| " et

.50

1

see[21,22. For comparison, the asymptotic variances of the
estimators estimated by the inverted Fisher information
evaluated at the optimum are given by [val=64/nt and
varf?]=26*/n, which can be used as convenient approxi-
mations of Eqs(32) and (33).

1.45

1.40

IV. EXAMPLES AND NUMERICAL RESULTS

Trajectories from the OU process in the threshold and
suprathreshold regimes were simulated according to the Eu-
ler scheme with a step size of 0.01 msec for different input -]
parameter values. The process was run until reaching a
thresholdS where the time was recorded. This was repeated
100 times, and on the data sets obtaingdand o were
estimated after performing a Kolmogorov-Smirnov test of o
exponential distribution to test the regime. All simulated data T
sets were highly rejected as exponentially distributed: the
highestp value was 0.0036 and the mean was less thaf 10 ]

Three sets of simulations were run: the first to test the
estimatorg23) and(24), the second to evaluate the possible .
influence from misspecifications in the intrinsic parameters 4 2 A 0 1 2 3
on the same estimators, and the third to compare with the
estimators(30) and (31) from the Wiener process approxi-
mation. In th(_a last two sets of simulations, also esumatod ata sets simulated withi=1.5 mV/msec,o=1 mV/\msec, 7
(16) was applied. =10 ®=10 mV. The straight i through the first

In the first set of simulations the parameter values were meec, an M e straight lines pass through the firs

| and third quartiles; the horizontal lines are set at the parameter
set tou=1.5 mV/msec,oc=1 mV/{ymsec,7=10 msec, and

A values used in the simulations.
S=10 mV. A 1000 data sets each of size 100 were generated,

and on each of them and o were estimated. The estimates assumed largei=10) than the true valué=8), u tends to be
of w averaged 1.496+0.035 mV/msémeanzstandard de- overestimatedA’s in left pane) and underestimated 8 is
viation), and the estimates of o averaged assumed smallg=10) than the true valué=12) (+’s in left
0.926+0.127 mVimsec. Normal quantile plots of the esti- pane). Misspecifications in- have the opposite effect on the
mates are in Fig. 2. The estimator gfappears nonbiased, estimates ofu (X's and ¢ s in left pane).
with small variance and normal distribution, whereas the es- The picture foro is more complicatedright pane). As
timator of o underestimates the correct value and is far fromalready shown in Fig. 2y seems downward biased. When
being normal, with a heavy tail to the right. does not fulfill condition(20) it is poorly estimated. Mis-

In the second set of simulations the influence of misspecispecifications inr and S appear to have the same effects of
fications in the intrinsic parameters is investigatedwas  either enlarging or reducing as ong.
either 1, 1.5, or 2 mV/msec, and was either 0.1, 1, or When the suprathreshold estimaf@B) estimatesu to be
1.5 mV/ymsec. Five combinations of the intrinsic param-in threshold regime—i.e u7-S<e for some smalls—the
eters were considered=10 msec an®=38, 10, and 12 mV, threshold estimatofl6) for o should be applied. This is the
respectively, and5=10 mV andr=8 and 12 msec, respec- case for the left points in each group in right panel of Fig. 3,
tively, for each of the nine combinations of input parameterwhere the estimateld 6) of o are seen to be superigonly
values. Onlyu’s for which wr=S were considered, which the case with well-specified intrinsic parameters is included
gives a total of 39 combinations. A 100 data sets were genwhen we are far from threshold regime, the estiméi@j is
erated for each combination, and on each datgusehd o very poor(some points fall above plotting regipn
were estimated. In the estimation procedure it was assumed In the third set of simulations it was assumed that the
that 7=10 msec an®=10 mV. In Fig. 3 the results are sum- intrinsic parameters were well specified, but two values of
marized, where the points represent the average of the esthe time constant were considered; 10 or 20 msec, an8&
mates for each combination of parameters. was set to 10 mV. The same sets of input parameters as

When the intrinsic parameters are well specifieéds on  before were used. Estimation was performed both with su-
the panels estimates ofu are superior in all cases. 8 is prathreshold estimation, EqR3) and(24), with the Wiener

Q>

0.6

FIG. 2. Gaussian quantile plotempirical versus theoretical
Iquanulei; for the estimator¢23) and (24) from the 1000 artificial
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o7 =10 msec; § =10 mV
A7 =10 msec; S = 8 mV
+:T:10msec;S:12mV

xiT=38msec; S=10mV
<{>: 17 =12 msec; S = 10 mV

A: 7 = 10 msec; S = 10 mV, estimator (16)

2.5

2.0

1.5

1.0
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OO0
,,,,,, G,,O,,,O,,,,,,
868
TEt
------ -6
...... 000 .
10 15 20

o] A
“ A
] ) ,
A
A &
= £63
© EE AA 0x
— o A%% A
A +
. ox" 0%
9.
0 6]
o] 44
0.1 10 15

I (l’ng‘e/C) mV )

g ( /I5eC

FIG. 3. Mean from 100 realizations of the estimat(®8) and(24) whenSand r are misspecified. Each data set consists of 100 simulated
ISI's. Left panel: estimates of versus correct values. For each valuewgfo=0.1 mV/Jymsec(left points, o=1.0 mV/ymsec(middle
points, ando=1.5 mV/JYmsec(right pointg. Right panel: estimates ef versus correct values. For each valuerofu=1.0 mV/msed|eft
pointy, u=1.5 mV/msedmiddle point3, andx=2.0 mV/msedright pointg. Also estimator(16) is plotted in the right panel whe@ and
7 are well specifiedpoints above plotting region are missjinghe dashed lines are the identity lines, indicating the best possible estimates.

process approximation, Eq&0) and (31), and with thresh-  prisingly, the Wiener process approximation improves when

old estimation, Eq(16). Again, 100 data sets were generatedr is larger, since in the limit wher— o, the OU process

for each combination of parameters. In Fig. 4 the results areonverges to the Wiener process.

summarized, with points representing the average of esti- As before, the estimatai24) of o is always poor when

mates. condition (20) is not fulfilled. The estimatof31) does not
The estimator(23) of u (O's and A’s in left pane) is  seem sensitive to the approximation and is always good,

clearly superior tq30) (X's and +’s in left pane). Not sur-  maybe except for smait in the threshold regime. If E¢23)

estimator (23), (24) estimator (30), (31) estimator (16)

—+:7=10 msec; $S=10 mV @ :7=10 msec; $=10 mV
> :7=20 msec; S=10 mV & :7=20 msec; S=10 mV

©:7=10 msec; S=10 mV
AN:1=20 msec; S=10 mV

n v
i A
S e Bty ! *
X X X o 4
o A ®
wl L AA
=7 X X X AT z!o
TolaBRe + 9 §ka
: bt S
x X X .
3 4+ °+ 0
b . . 3 8¢ . .
1.0 1.5 2.0 01 1.0 15
o () o (e

FIG. 4. Estimation assuming the full model and the Wiener approximation, respectively, on data sets simulated from the full model for

different time constants. Mean from 100 realizations. Left panel: estimaiesRight panel: estimates @f. Points above plotting region of
estimator(16) are missingright pane). The dashed lines are the identity lines, indicating the best possible estimates.
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givesur=S, then Eq.(24) should not be applied. Instead, if Their analysis is based on the coefficient of variation and the
there is confidence in the value gfa good choice would be skewness coefficient, which are, respectively, a measure of
Eq. (16), otherwise Eq(31). the spiking irregularity and a measure of the asymmetry of
Simulations of trajectories in the subthreshold regime is @he interval distribution. It was found that the data are not
difficult task, and there exists a large literature on this subjectonsistent with the model if the time constant takes a value
[26—24. It is not the aim of the present paper to face theseconsidered as standard one. The authors deduced from the
problems, and only the threshold and suprathreshold regimdsding that unless the inputs are correlated, the OU model is
have been considered. not adequate. This idea was further pursuel®j where the
correlation of consecutive ISIs was introduced. The authors
concluded that the OU model with temporally correlated in-
puts may account for the data if the correlation time scale of

The distribution of the first-passage time through a conthe inputs is on the order of 100 msec. The same modeling
stant level by an OU process has been the subject of margPproach was applied {31].
studies, not only in neuronal modelifig9]. In this paper we The model might be too simple to reproduce the inter-
use results on moments and distributions to propose estim&pike intervals realistically. A natural generalization of the
tors of the input parameters, depending on the regime. model was introduced simultaneously with the classical LIF
The main contributions of the present work are the deri-model (for references seg32]). In this model the passive
vation of expressions foE[e""] and E[e?""] of the first- membrane time constant is replaced by a drive-dependent
passage time of the OU process through a constant threshoRfffective time constant. More specifically, dri) in Eq. (2)
This leads to simple and closed expressions for moment eds replaced by
timators ofu ando in the suprathreshold regime and when X
is small relative to the distance between the asymptotic de- wXet) = = =+ w(Ve = X) + v(X — V), (39
polarization and the threshold. The appealing feature is that T

the numerical difficulties arising from the handling of the where >0 and»<0 are new constants characterizing the
expressions given in the known results for the Laplace transnpyt. It is obvious that now the model has an input-
form (where the exponents of the exponential function in thejependent time constant and its behavior will be different
expectations are negatjvare avoided. from the OU model. In addition, taking into account the
The results obtained from the simulated data show thayariable conductance, the infinitesimal variance becomes

the proposed estimation procedure in the suprathreshold rgtate dependeriB3]. The estimation in this type of models
gime works excellently for.. The variance parameter is || be investigated elsewhere.

more difficult, especially whemr is larger than the condition

required for the expressions of the above-mentioned mo-
ments to be correct. We suggest estimatingnd in case it ACKNOWLEDGMENTS
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Ikelinood estimator ol when the process 1S in the tresh- ., 4 Agency of the Czech Republic Grant N809/02/

old regime or the estimator derived from the Wiener Procesy 69, the Academy of Sciences Grafinformation Society

apprOX|_mat|on of the OU process. o T40011040), and the European Community’s Human Po-
In this paper only the situation where the intrinsic param-y, o Programme under Contract No. HPRN-CT-2000-

eters are assumed to be known is considered. The time CO8H100 DYNSTOCH '

stant has shown to be crucial for the estimation, and a way ' '

of estimating also this parameter from ISI data could be the

V. DISCUSSION

We are grateful to Michael Sgrensen for suggestions and

following. If o is estimated with the Wiener process approxi- APPENDIX

mation(31), then Eqs(18) and(19) with the left-hand sides ) )
substituted with Eqs(21) and (22) would constitute a two- Consider the OU modeb) for the membrane potentia
equation system with two unknowrig and 7), which could @t timet, with solution

be solved numerically. X = ur— e (ur— ), (A1)

Previously, a computer-intensive method was proposed in
[12] for the estimation of the same two parameters in the OUVherew,=ofte¥"dW;. We will now prove Eqs(18) and(19)
model as in this paper. Their method is based on the experbising martingales, which will be defined using the condi-
mentally observed first- and second-order moments of intettional moments from the OU process. In general, for a mar-
spike intervals and applied to interspike interval data retingale M, and a stopping timé, we haveE[M z]=E[M],
corded from neurons in the mesencephalic reticulawhere70t=min(7,t). For a subclase we have the stronger
formation of the cat during hypothetical sleep, slow-waveresult(see[34], p. 22])
sleep stage, and wake stage. However, the numerical evalu- Doob’s optional-stopping theoreniet 7 be a stopping
ations implicated are difficult to handle for the general re-time and letM, be a uniformly integrable martingale. Then
searcher. E[M=E[M].

In [13] it was directly stated that the OU model does not Note thatT given by Eq.(1) is a stopping time. Fok
reproduce spiking statistics of neurons in prefrontal cortexe N, Eq. (A1) yields that (X,— un*e’"=(w,— u7)* so that

011907-7
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E[(w;— um)X| wg] =E[(X;— u7)*é!"| X ]. Fort>swe therefore
have

El(w; = u7)|ws] = (05— u7), (A2)

0,2
El(w~ pr)ws] = (wg= w0+ - (7= &),

(A3)

370 2
El( - w0 g = ((ws— um?+ %(eﬂ’f— ezgv)
B 37204
2

Define the filtrationF,=o(Xs;0<s<t), the o algebra gen-
erated byX, for 0=s=<t. Then the process

(-7, (A4)

(A5)

is a martingale with respect t&; by Eq. (A2) and because
E[ Y] <« sinceX; is Gaussian. ThereforétT=Ymt, the pro-
cessY; stopped afT, is also a martingalésee[34], p. 99.
Moreover, if ur>S and 6?<2(ur-9?/7, thenY{ is uni-

Y= (ur=X)e' = ur— o,

PHYSICAL REVIEW E71, 011907(2005
E[IYT21 = E _ 21— 2 ﬂzE 2(T/7 _ q
[1¥]12)= Ef(u7= ora)?] = (ur)?+ “-El( )

0,2
< (un?+ " (R9)
by Eq. (A8). To give an upper bound oB[e*""] use Eq.
(A8) again to obtain

(72 =E| (7= Xy 2TV %2<e2<m>’f— i)

= (ur - 9?E[ T/ - %(E[em”’f] -1),

(A10)

where we have used théiur—X;)?> (ur—S)? when ur
>S (suprathreshold cage Since o?<2(um-9%/7, EQq.
(A10) can be rearranged to

2(u1)? - 0%

I U S (TOt)/ 7
2(ur—9°?- 10? = Ee 1

(A11)

formly integrable. To show this it is enough to show that Taking limits on both sides we obtain

E[JY{|P]<K for all t, for somep>1 andK a positive con-
stant; se¢34], p. 127. First define

< 70’
Yi= (pr=@)® = (€= 1), (A6)

which is a martingale with respect 5;:

- ro?
ELVIF = E| (wr= w2~ ("~ Do,

= (MT_ ws)2+ %Z(eﬂ/f_ eZSIf) _ %Z(eZt/T_ 1)

=V, (A7)

2(u1)? - 0%

i e (TOO/ ™ = T/
Pur S 72 = Im B[] = B[] (AL2)

t—oo

by monotone convergence. Doob’s optional-stopping theo-
rem can therefore be applied th if wr>S and if o2
<2(ur-9?/ 7. This yields

pur=E[Y5] = E[Y7] = E[(u7~ X7)e""] = (ur- SE["],
(A13)
which finally yields Eq.(18). To prove Eq.(19) note that

from Eq. (A12) we have that in the given parameter subset
E[€?"7] is finite so that Eq(11) can be applied, which di-

using Eq.(A3), and that all moments of a Gaussian variablerectly yields

are finite, so thaE[?t]<oc. Therefore,
(w2 = E[Yo] = E[Yra] = E[ (7~ 070)?]
_ %-ZE[(eZ(TD[)/T_ 1)]

(A8)
Putp=2, then

H2<$) 4(&)2— 2
E[e”"7]= ol WTo)
(MT‘S)) <(,U~T‘3)>
H 4 -2
{“= -
B 2(,(1.7)2— 70%
B 20— S
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